The standard number 239 issued by the Basel Committee on Banking Supervision (BCBS 239) prescribes requirements concerning risk data aggregation and risk reporting. Its principles comprehensively address all major subject areas from governance, data architecture and IT infrastructure, through accuracy, integrity, completeness, timeliness and adaptability of risk data aggregation, to accuracy, comprehensiveness, clarity, frequency and distribution of risk reporting. Our client trusted us to provide them business and IT consulting to enable them to adhere to six of the fourteen principles of BCBS 239.
The selected principles of BCBS 239 to focus on were those that define data architecture, IT infrastructure, and the accuracy, integrity, completeness and timeliness of risk data aggregation.
Though these principles may seem to represent separate aspects of requirements, following thorough analysis we came to a digest that is much more straightforward to be adopted by top management with a holistic view: all risk related data throughout the organization must be collected
As the bank already had a data warehouse (DWH) in production for quite a few years, the idea to integrate the data model into it may have seemed obvious. After evaluating the forecasted overhead of pushing the required changes through the DWH, which had very heavily governed change processes and the broad community of its consumers were meant to be affected, the proposed solution was to build a separate risk data hub that fully complies with the requirements derived from the principles in focus. At a later stage, when the data in the risk data hub was audited and proved to be of high accuracy and reliability, they would switch over to use the same data feeding processes as the risk data hub.
To make the audit trail complete, not only the processed that feed the data hub, but the processes by which data consumers perform analyses and produce reports from the data hub had also to be assessed and documented in order to quantify the probability of data corruption at each data transfer or processing step.
The risk management domain consultant and the two data management subject matter experts assigned by Advocate committed themselves to accomplish the following goals:
After concluding the design and implementation of the changes as specified by the SRS documents, it became an easy task to show for any piece of risk data, from which system (or systems) it came from, through what subsequent transfer and processing steps, with a quantified reliability – that is in reverse proportion to the probability of data corruption – assigned to each step, as well as the whole chain of steps leading from sources to the reported data. Clearly, any data processing trail inherits the worst reliability, that is, the highest probability of data corruption to be found among the steps that constitute it.
Risk managers and the department responsible for regulatory reporting were enabled to use aggregated risk data from a single audited source, available the next business day, with a well-known data reliability.
The team responsible for data quality management were provided a clear picture of where they should focus their efforts, to enhance transfer and processing steps that bring down the reliability of the data consumed.
regulations meant a great challenge for the whole sector. Find out how Advocate consultants made sured a Hungarian Bank's Treasury to comply with the new obligations.
Learn MoreDiscover how Advocate consultants tackled the challenges of the Loan Repayment Moratorium.
Our Latest Projects